Changing the style of scatter plot points
Let's continue exploring Seaborn's mpg dataset by looking at the relationship between how fast a car can accelerate ("acceleration") and its fuel efficiency ("mpg"). Do these properties vary by country of origin ("origin")?
Note that the "acceleration" variable is the time to accelerate from 0 to 60 miles per hour, in seconds. Higher values indicate slower acceleration.
# Import Matplotlib and Seaborn import matplotlib.pyplot as plt import seaborn as sns import pandas as pd url = 'https://assets.datacamp.com/production/repositories/3996/datasets/e0b285b89bdbfbbe8d81123e64727ff150d544e0/mpg.csv' mpg = pd.read_csv(url) print(mpg)
mpg cylinders displacement horsepower weight acceleration \ 0 18.0 8 307.0 130.0 3504 12.0 1 15.0 8 350.0 165.0 3693 11.5 2 18.0 8 318.0 150.0 3436 11.0 3 16.0 8 304.0 150.0 3433 12.0 4 17.0 8 302.0 140.0 3449 10.5 5 15.0 8 429.0 198.0 4341 10.0 6 14.0 8 454.0 220.0 4354 9.0 7 14.0 8 440.0 215.0 4312 8.5 8 14.0 8 455.0 225.0 4425 10.0 9 15.0 8 390.0 190.0 3850 8.5 10 15.0 8 383.0 170.0 3563 10.0 11 14.0 8 340.0 160.0 3609 8.0 12 15.0 8 400.0 150.0 3761 9.5 13 14.0 8 455.0 225.0 3086 10.0 14 24.0 4 113.0 95.0 2372 15.0 15 22.0 6 198.0 95.0 2833 15.5 16 18.0 6 199.0 97.0 2774 15.5 17 21.0 6 200.0 85.0 2587 16.0 18 27.0 4 97.0 88.0 2130 14.5 19 26.0 4 97.0 46.0 1835 20.5 20 25.0 4 110.0 87.0 2672 17.5 21 24.0 4 107.0 90.0 2430 14.5 22 25.0 4 104.0 95.0 2375 17.5 23 26.0 4 121.0 113.0 2234 12.5 24 21.0 6 199.0 90.0 2648 15.0 25 10.0 8 360.0 215.0 4615 14.0 26 10.0 8 307.0 200.0 4376 15.0 27 11.0 8 318.0 210.0 4382 13.5 28 9.0 8 304.0 193.0 4732 18.5 29 27.0 4 97.0 88.0 2130 14.5 .. ... ... ... ... ... ... 368 27.0 4 112.0 88.0 2640 18.6 369 34.0 4 112.0 88.0 2395 18.0 370 31.0 4 112.0 85.0 2575 16.2 371 29.0 4 135.0 84.0 2525 16.0 372 27.0 4 151.0 90.0 2735 18.0 373 24.0 4 140.0 92.0 2865 16.4 374 23.0 4 151.0 NaN 3035 20.5 375 36.0 4 105.0 74.0 1980 15.3 376 37.0 4 91.0 68.0 2025 18.2 377 31.0 4 91.0 68.0 1970 17.6 378 38.0 4 105.0 63.0 2125 14.7 379 36.0 4 98.0 70.0 2125 17.3 380 36.0 4 120.0 88.0 2160 14.5 381 36.0 4 107.0 75.0 2205 14.5 382 34.0 4 108.0 70.0 2245 16.9 383 38.0 4 91.0 67.0 1965 15.0 384 32.0 4 91.0 67.0 1965 15.7 385 38.0 4 91.0 67.0 1995 16.2 386 25.0 6 181.0 110.0 2945 16.4 387 38.0 6 262.0 85.0 3015 17.0 388 26.0 4 156.0 92.0 2585 14.5 389 22.0 6 232.0 112.0 2835 14.7 390 32.0 4 144.0 96.0 2665 13.9 391 36.0 4 135.0 84.0 2370 13.0 392 27.0 4 151.0 90.0 2950 17.3 393 27.0 4 140.0 86.0 2790 15.6 394 44.0 4 97.0 52.0 2130 24.6 395 32.0 4 135.0 84.0 2295 11.6 396 28.0 4 120.0 79.0 2625 18.6 397 31.0 4 119.0 82.0 2720 19.4 model_year origin name 0 70 usa chevrolet chevelle malibu 1 70 usa buick skylark 320 2 70 usa plymouth satellite 3 70 usa amc rebel sst 4 70 usa ford torino 5 70 usa ford galaxie 500 6 70 usa chevrolet impala 7 70 usa plymouth fury iii 8 70 usa pontiac catalina 9 70 usa amc ambassador dpl 10 70 usa dodge challenger se 11 70 usa plymouth 'cuda 340 12 70 usa chevrolet monte carlo 13 70 usa buick estate wagon (sw) 14 70 japan toyota corona mark ii 15 70 usa plymouth duster 16 70 usa amc hornet 17 70 usa ford maverick 18 70 japan datsun pl510 19 70 europe volkswagen 1131 deluxe sedan 20 70 europe peugeot 504 21 70 europe audi 100 ls 22 70 europe saab 99e 23 70 europe bmw 2002 24 70 usa amc gremlin 25 70 usa ford f250 26 70 usa chevy c20 27 70 usa dodge d200 28 70 usa hi 1200d 29 71 japan datsun pl510 .. ... ... ... 368 82 usa chevrolet cavalier wagon 369 82 usa chevrolet cavalier 2-door 370 82 usa pontiac j2000 se hatchback 371 82 usa dodge aries se 372 82 usa pontiac phoenix 373 82 usa ford fairmont futura 374 82 usa amc concord dl 375 82 europe volkswagen rabbit l 376 82 japan mazda glc custom l 377 82 japan mazda glc custom 378 82 usa plymouth horizon miser 379 82 usa mercury lynx l 380 82 japan nissan stanza xe 381 82 japan honda accord 382 82 japan toyota corolla 383 82 japan honda civic 384 82 japan honda civic (auto) 385 82 japan datsun 310 gx 386 82 usa buick century limited 387 82 usa oldsmobile cutlass ciera (diesel) 388 82 usa chrysler lebaron medallion 389 82 usa ford granada l 390 82 japan toyota celica gt 391 82 usa dodge charger 2.2 392 82 usa chevrolet camaro 393 82 usa ford mustang gl 394 82 europe vw pickup 395 82 usa dodge rampage 396 82 usa ford ranger 397 82 usa chevy s-10 [398 rows x 9 columns]
# Import Matplotlib and Seaborn import matplotlib.pyplot as plt import seaborn as sns # Create a scatter plot of acceleration vs. mpg sns.relplot(x='acceleration', y='mpg', data=mpg, kind='scatter', style='origin', hue='origin') # Show plot plt.show()

All the contents are from DataCamp