Visualizing standard deviation with line plots

In the last exercise, we looked at how the average miles per gallon achieved by cars has changed over time. Now let's use a line plot to visualize how the distribution of miles per gallon has changed over time. Seaborn has been imported as sns and matplotlib.pyplot has been imported as plt.

# Import Matplotlib and Seaborn
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

url = 'https://assets.datacamp.com/production/repositories/3996/datasets/e0b285b89bdbfbbe8d81123e64727ff150d544e0/mpg.csv'
mpg = pd.read_csv(url)
print(mpg)
      mpg  cylinders  displacement  horsepower  weight  acceleration  \
0    18.0          8         307.0       130.0    3504          12.0   
1    15.0          8         350.0       165.0    3693          11.5   
2    18.0          8         318.0       150.0    3436          11.0   
3    16.0          8         304.0       150.0    3433          12.0   
4    17.0          8         302.0       140.0    3449          10.5   
5    15.0          8         429.0       198.0    4341          10.0   
6    14.0          8         454.0       220.0    4354           9.0   
7    14.0          8         440.0       215.0    4312           8.5   
8    14.0          8         455.0       225.0    4425          10.0   
9    15.0          8         390.0       190.0    3850           8.5   
10   15.0          8         383.0       170.0    3563          10.0   
11   14.0          8         340.0       160.0    3609           8.0   
12   15.0          8         400.0       150.0    3761           9.5   
13   14.0          8         455.0       225.0    3086          10.0   
14   24.0          4         113.0        95.0    2372          15.0   
15   22.0          6         198.0        95.0    2833          15.5   
16   18.0          6         199.0        97.0    2774          15.5   
17   21.0          6         200.0        85.0    2587          16.0   
18   27.0          4          97.0        88.0    2130          14.5   
19   26.0          4          97.0        46.0    1835          20.5   
20   25.0          4         110.0        87.0    2672          17.5   
21   24.0          4         107.0        90.0    2430          14.5   
22   25.0          4         104.0        95.0    2375          17.5   
23   26.0          4         121.0       113.0    2234          12.5   
24   21.0          6         199.0        90.0    2648          15.0   
25   10.0          8         360.0       215.0    4615          14.0   
26   10.0          8         307.0       200.0    4376          15.0   
27   11.0          8         318.0       210.0    4382          13.5   
28    9.0          8         304.0       193.0    4732          18.5   
29   27.0          4          97.0        88.0    2130          14.5   
..    ...        ...           ...         ...     ...           ...   
368  27.0          4         112.0        88.0    2640          18.6   
369  34.0          4         112.0        88.0    2395          18.0   
370  31.0          4         112.0        85.0    2575          16.2   
371  29.0          4         135.0        84.0    2525          16.0   
372  27.0          4         151.0        90.0    2735          18.0   
373  24.0          4         140.0        92.0    2865          16.4   
374  23.0          4         151.0         NaN    3035          20.5   
375  36.0          4         105.0        74.0    1980          15.3   
376  37.0          4          91.0        68.0    2025          18.2   
377  31.0          4          91.0        68.0    1970          17.6   
378  38.0          4         105.0        63.0    2125          14.7   
379  36.0          4          98.0        70.0    2125          17.3   
380  36.0          4         120.0        88.0    2160          14.5   
381  36.0          4         107.0        75.0    2205          14.5   
382  34.0          4         108.0        70.0    2245          16.9   
383  38.0          4          91.0        67.0    1965          15.0   
384  32.0          4          91.0        67.0    1965          15.7   
385  38.0          4          91.0        67.0    1995          16.2   
386  25.0          6         181.0       110.0    2945          16.4   
387  38.0          6         262.0        85.0    3015          17.0   
388  26.0          4         156.0        92.0    2585          14.5   
389  22.0          6         232.0       112.0    2835          14.7   
390  32.0          4         144.0        96.0    2665          13.9   
391  36.0          4         135.0        84.0    2370          13.0   
392  27.0          4         151.0        90.0    2950          17.3   
393  27.0          4         140.0        86.0    2790          15.6   
394  44.0          4          97.0        52.0    2130          24.6   
395  32.0          4         135.0        84.0    2295          11.6   
396  28.0          4         120.0        79.0    2625          18.6   
397  31.0          4         119.0        82.0    2720          19.4   

     model_year  origin                               name  
0            70     usa          chevrolet chevelle malibu  
1            70     usa                  buick skylark 320  
2            70     usa                 plymouth satellite  
3            70     usa                      amc rebel sst  
4            70     usa                        ford torino  
5            70     usa                   ford galaxie 500  
6            70     usa                   chevrolet impala  
7            70     usa                  plymouth fury iii  
8            70     usa                   pontiac catalina  
9            70     usa                 amc ambassador dpl  
10           70     usa                dodge challenger se  
11           70     usa                 plymouth 'cuda 340  
12           70     usa              chevrolet monte carlo  
13           70     usa            buick estate wagon (sw)  
14           70   japan              toyota corona mark ii  
15           70     usa                    plymouth duster  
16           70     usa                         amc hornet  
17           70     usa                      ford maverick  
18           70   japan                       datsun pl510  
19           70  europe       volkswagen 1131 deluxe sedan  
20           70  europe                        peugeot 504  
21           70  europe                        audi 100 ls  
22           70  europe                           saab 99e  
23           70  europe                           bmw 2002  
24           70     usa                        amc gremlin  
25           70     usa                          ford f250  
26           70     usa                          chevy c20  
27           70     usa                         dodge d200  
28           70     usa                           hi 1200d  
29           71   japan                       datsun pl510  
..          ...     ...                                ...  
368          82     usa           chevrolet cavalier wagon  
369          82     usa          chevrolet cavalier 2-door  
370          82     usa         pontiac j2000 se hatchback  
371          82     usa                     dodge aries se  
372          82     usa                    pontiac phoenix  
373          82     usa               ford fairmont futura  
374          82     usa                     amc concord dl  
375          82  europe                volkswagen rabbit l  
376          82   japan                 mazda glc custom l  
377          82   japan                   mazda glc custom  
378          82     usa             plymouth horizon miser  
379          82     usa                     mercury lynx l  
380          82   japan                   nissan stanza xe  
381          82   japan                       honda accord  
382          82   japan                     toyota corolla  
383          82   japan                        honda civic  
384          82   japan                 honda civic (auto)  
385          82   japan                      datsun 310 gx  
386          82     usa              buick century limited  
387          82     usa  oldsmobile cutlass ciera (diesel)  
388          82     usa         chrysler lebaron medallion  
389          82     usa                     ford granada l  
390          82   japan                   toyota celica gt  
391          82     usa                  dodge charger 2.2  
392          82     usa                   chevrolet camaro  
393          82     usa                    ford mustang gl  
394          82  europe                          vw pickup  
395          82     usa                      dodge rampage  
396          82     usa                        ford ranger  
397          82     usa                         chevy s-10  

[398 rows x 9 columns]
# Change the plot so the shaded area shows the standard deviation instead of the confidence interval for the mean.
# Make the shaded area show the standard deviation
sns.relplot(x="model_year", y="mpg",
            data=mpg, 
            kind="line",
            ci="sd")


# Show plot
plt.show()

 

All the contents are from DataCamp

+ Recent posts